
Math 733: Vector Fields, Differential Forms, and Cohomology
Lecture notes

R. Jason Parsley

Author’s note: These are rough lecture notes, very rough, for a course in spring 2010 at Wake
Forest University. Comments and corrections are welcome. This is a master’s level course that
does not assume knowledge of point-set topology; we work primarily with subsets of R3.

1. INTRODUCTION – A QUESTION FROM A Beautiful Mind

We begin with a question of great interest to many mathematicians, and one that quite a
number of vector calculus books state incorrectly. We show a clip from the film A Beautiful
Mind, which follows the life of John Nash, a brilliant mathematician and the only one (?)
to ever win a Nobel Prize. (There’s no Nobel Prize in mathematics; the Fields Medal is
the equivalent award. Nash won his Nobel in economics for work on game theory.)

John Nash John Nash, older Crowe, as Nash

In the film, John Nash (Russell Crowe) is teaching a sophomore-level vector calculus
course, um, in his own way. After jettisoning the textbook into the trash, he poses the
following problem:

Problem 1.1 (Nash/Crowe’s Problem).

V ={F : (R3 \X)→ R3 so∇× F = 0}
W ={F = ∇g} {‘Gradients’}

dim(V \W ) = ?

Here X is a subset of R3; ∇× F is the curl of F .

Nash claims this it will take

• “for some of you, many months to solve”
• “for others among you, it will take you the term of your natural lives”
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Hollywood was being overly dramatic. This is a great problem and relates to my research.
But, it’s not that hard to solve! We’ll have an answer within two months.
The answer actually depends on X ; it relates to how many different nontrivial loops you
can draw on the subset R3 \X .

Let’s put this in other terms. Recall that a vector field is really a map ~F : Ω ⊂ R3 → R3

which assigns a vector to every point in the subset Ω; we can write

F (x, y, z) = u(x, y, z) i + v(x, y, z) j + w(x, y, z) k

(we will usually drop vector symbol above ~F , unless needed for clarity).

In this course, we will be concerned with all the smooth1 vector fields on a three-dimensional
subset Ω ⊂ R3. In Nash’s problem, think of Ω = R3 \X . We call this set of smooth vector
fields V F (Ω). It is a vector space, since you can scale vector fields by multiplying by a
constant and you can add vector fields.
Recall the kernel of a map ϕ consists of all of the elements it maps to zero, i.e., kerϕ =
{x|ϕ(x) = 0}.
Nash’s Problem restated: Consider V F (Ω), the space of all smooth vector fields on Ω.
Let V be the subspace equal to ker curl, and let W be the space of all gradients, i.e., W =
Im grad. Then what is the dimension of their quotient, i.e.,

dim(V \W ) = dim(ker curl \ Im grad) = ?

Exercise 1.2. The curl of∇g is zero, for any gradient. Thus W ⊂ V .

1.1. Why is this an interesting problem? This problem relates the local idea of taking
a derivative to the global idea of how many ‘holes’ Ω has. Recall that a derivative is
defined as a limit, so it only depends on the values near a point in question; the operators
curl, gradient, and divergence are merely ways of taking derivatives of vector fields and
multivariable functions, so they really are local operations. So we ask a question about
derivatives, a seemingly local idea, and get an answer that depends on the topology of
Ω. If we stretch or deform Ω without tearing it or making it pass through itself, we obtain
the same answer.
This problem relates a local idea (derivatives) to a global idea (the topology of Ω). Prob-
lems like that are scintillating! The Gauss-Bonnet Theorem in differential geometry does
this for surfaces: it says that if you measure how much a surface is curving at a point
(a local idea) and integrate it, the answer only depends on the topology of the surface –
how many ‘holes’ it has (a global idea). The Gauss-Bonnet Theorem forms the crowning
achievement of a class on curves & surfaces.
We close with some examples of the answer to Nash’s problem.

1smooth means all derivatives exist



X Ω = R3 \X dim(V \W )

∅ R3 0
point p R3 \ p 0
ball B R3 \B 0
z-axis R3\ axis 1
line ` R3 \ ` 1

solid torus 1
solid n-holed torus n

2. VECTOR CALCULUS REVIEW I

We review the basics from vector calculus over the next 4 lectures. We will work primarily
with vectors v ∈ R3, but occasionally generalize to Rn.
The inner product, or dot product, of two vectors v,w in Rn is

v ·w = v1w1 + · · ·+ vnwn = |v||w| cos θ,

where θ is the angle between them. We note that v ·w = 0 if and only if v ⊥ w – keep in
mind that~0 is perpendicular to all vectors. Also, any inner product must be commutative:
v ·w = w · v.

w

v
θ

v x w

Theorem 2.1 (Cauchy-Schwarz Inequality). For v,w in a vector space endowed with an inner
product 〈v,w〉,

〈v,w〉 ≤ ‖v‖‖w‖,

where the norm is the one induced by the inner product, ‖v‖ = 〈v,v〉1/2. Equality holds if and
only if v and w are scalar multiples.

For us, we use the dot product as our inner product; its induced norm is simply the length
of v.
The cross-product of two vectors in R3 is defined to be

v ×w = det

 i j k
v1 v2 v3

w1 w2 w3


=

∣∣∣∣ v2 v3

w2 w3

∣∣∣∣ i − ∣∣∣∣ v1 v3

w1 w3

∣∣∣∣ j +

∣∣∣∣ v1 v2

w1 w2

∣∣∣∣ k
=(v2w3 − v3w2) i− (v1w3 − v3w1) j + (v1w2 − v3w1)k



The cross-product obeys the right-hand rule. The cross product is anti-commutative: v ×
w = −w × v. Its length can be expressed by

|v ×w| = |v||w| sin θ.
Definition 2.2. An orthogonal matrix A is one with AT = A−1. The row vectors of any
orthogonal matrix forms an orthonormal basis of Rn. An orthonormal basis is a mutually
perpendicular linearly independent set of unit vectors spanning Rn.

Any orthogonal matrix respects the dot product Av · Aw = v · w; it preserves the cross
product, up to a sign change: Av × Aw = ±v ×w.

Definition 2.3. The triple product u×v ·w measures the volume of the parallelopiped (3-d
slanted box) with sides u,v,w.

Permuting u,v,w changes the triple product by±1, based on the sign of the permutation:

u× v ·w = v ×w · u = w × u · v = −v × u ·w.
Definition 2.4. The gradient of a function f(x1, . . . , xn) is the vector field in Rn given by

∇f = 〈fx1 , . . . , fxn〉.
Definition 2.5. The level curves (or level surfaces) of a function f : Rn → R consist of all
points where f equals the same constant; there’s a nonempty level curve for each constant
appearing in the range of f . The nondegenerate level curves/surfaces of f form (n − 1)-
dimensional subsets of Rn.

For f(x, y) : R2 → R, we can draw its graph z = f(x, y). The level curves represent all
the points lying at a constant height. An example of this are contour maps of elevations.
Fact: The gradient points orthogonally to all level curves.

Definition 2.6. The directional derivative of f in direction u, where u is a unit vector, mea-
sures the rate of change of f as we move in the direction of u. It can be written as

Duf = ∇f · u.
Definition 2.7. For a surface S ⊂ R3, we define its tangent plane at point P to be the set
of directions that are tangent at P to some curve lying in S. A normal vector n to S at P is
one orthogonal to its tangent plane.

If S is a level surface of f(x, y, z), then we know ∇f points orthogonal to it and is thus a
normal vector to S.

Example 2.8. Consider the ellipsoid x2 +
y2

4
+
z2

9
= 1. Find its tangent plane at P =

(1/3, 4/3, 2).

The ellipsoid is a level surface for f(x, y, z) = x2 +
y2

4
+
z2

9
. We find its gradient to

be ∇f = 〈2x, y/2, 2
9
z〉. Then, ∇f(1/3, 4/3, 2) = 〈2/3, 2/3, 4/9〉 lies perpendicular to the

tangent plane.
A plane in R3 can be written as ax + by + cz = d, where 〈a, b, c〉 is perpendicular to the
plane. In our example, that plane is

2
3
x+ 2

3
y + 4

9
z = 2. �



Finally, we define the divergence and the curl of a vector field.

Definition 2.9. The divergence of V = ui + vj + wk, where u, v, and w are all functions of
x, y, z is

div V = ∇ · V = ux + vy + wz.

The curl of V = ui + vj + wk is

curlV = ∇× V = det

 i j k
∂

∂x

∂

∂x

∂

∂x
u v w


=(wy − vz) i + (uz − wx) j + (vx − uy)k

n.b., our book (and many European authors) write curl as rot, because curlV measures
the rotation of V around a point, a notion we will make precise in the next two lectures.

3. VECTOR CALCULUS REVIEW II: THE REAL MEANING OF DIVERGENCE

In this section we try to make the following statement mathematically precise:

“The divergence of V represents the rate of expansion per unit volume under the
flow of the fluid V .”

Definition 3.1. A homeomorphism f : A→ B is a one-to-one, onto map between (topolog-
ical) spaces that is continuous and has continuous inverse.
A diffeomorphism is a differentiable homeomorphism with differentiable inverse.

n.b., Many authors require a diffeomorphism to be a smooth homeomorphism; most of
our maps will be smooth, while some will only be piecewise smooth, so we can use this
latter definition.
A homeomorphism signifies that the two spaces are topologically equivalent.

Example 3.2. Provide maps that are continuous but not differentiable, e.g., f = |x|, and

maps that are differentiable but not smooth: g =

{
0 x ≤ 0

x2 x ≥ 0
.

We review the Jacobian of a map. For instance if f = (f1, f2, f3) : R3 → R3, its Jacobian is

(3.1) Jf =

(
∂fi
∂xj

)
=


∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f3

∂x1

∂f3

∂x2

∂f3

∂x3


The determinant of the Jacobian measures the stretching effect of the mapping f ; also
det Jf > 0 iff f preserves orientation.



Example 3.3. For f(r, θ) = (x, y) = (r cos θ, r sin θ) the map from Cartesian coordinates to
polar ones, we compute its Jacobian:

Jf =
∂(x, y)

∂(r, θ)
=

[
cos θ −r sin θ
sin θ r cos θ

]
Exercise 3.4. Consider cylindrical coordinates {r, θ, z} and spherical coordinates {ρ, φ, θ}
in R3. Compute the Jacobians for these coordinate changes from Cartesian coordinates,
i.e., find

∂(x, y, z)

∂(r, θ, z)
and

∂(x, y, z)

∂(ρ, φ, θ)

3.1. The one-parameter family of diffeomorphisms induced by V . Start with a fluid in
the subset Ω ⊂ R3, and let the fluid flow by the smooth vector field V (x, y, z). Let the
vector-valued function ϕ(x, y, z, t) : Ω × R → R3 represent where the point (x, y, z) has
flowed to after t seconds. Since V is smooth, if we let Ω flow for t seconds, it will go to
some subset Ωt which is diffeomorphic to Ω.
This means, for any fixed t value, the map ϕt(x, y, z) : Ω → R3 is a diffeomorphism of
Ω onto its image. The vector field V can be viewed as a derivative of ϕ, and uniquely
determines ϕ. Precisely,

(3.2)
∂ϕ

∂t
= V (ϕ(x, y, z, t))

Equation (3.2) means, given V , we can solve a system of differential equations to find ϕ,
using the initial condition that ϕ(x, y, z, 0) = (x, y, z).
We are now prepared to interpret divergence. The determinant of the Jacobian map of
ϕt measures to what extent Ω expands (or contracts) under the map ϕt. By taking its
derivative, we are calculating the rate of expansion. If we do this at t = 0, where ϕ0 is the
identity map, we are calculating the instantaneous rate at which Ω expands by flowing along
V – that is precisely what the divergence measures. As a formula, we have

Theorem 3.5. For the construction above and point p ∈ Ω ⊂ R3,

(3.3) ∇ · V (p) =
d

dt

∣∣∣∣
t=0

det Jϕt(p)

We provide a proof of this in the next section.

Example 3.6. Consider the vector field V = xi, in which all points move away from the
yz-plane at a rate equal to their distance from it. We begin by finding ϕ = 〈φ1, φ2, φ3〉 by
solving (3.2):

∂ϕ

∂t
=

(
∂φ1

∂t
,
∂φ2

∂t
,
∂φ3

∂t

)
= V (ϕ) = V (φ1, φ2, φ3).

This is actually an easy solved system of three ODE’s:

(3.4)

∂φ1

∂t
= φ1

∂φ2

∂t
= 0

∂φ3

∂t
= 0


=⇒

φ1 = c1e
t

φ2 = c2

φ3 = c3



Now apply the initial condition thatϕ(x, y, z, 0) = (x, y, z) to find that (c1, c2, c3) = (x, y, z).
Thus ϕt = 〈xet, y, z〉. This agrees with our expectation that neither the y nor z values can
change by flowing only in the i direction.
The Jacobian Jϕt is  et 0 0

0 1 0
0 0 1


Its determinant is et which implies that its derivative at t = 0 and hence the divergence of
V must both be 1. Of course, it’s easier to compute∇ · V directly.

Exercise 3.7. Repeat this example for V = r and for V = −yi + xj + k.

4. VECTOR CALCULUS REVIEW III

We continue working with the one-parameter family of diffeomorphisms ϕt induced by
a vector field V = 〈u, v, w〉 flowing on a domain. Our goal this time is to determine how
the Jacobian Jϕt provides a description of both divergence and curl.
Recall that {Jϕt} is a family (indexed by time t) of 3 × 3 matrices with Jϕ0 = I . We are

going to be concerned with the derivative of Jϕt; set B =
dJϕt
dt

∣∣∣∣
t=0

. We will call upon 3

useful linear algebra facts. The first one is

Proposition 4.1. Any square matrix B uniquely decomposes into a symmetric part B1 and a
skew-symmetric part B2:

B = B1 + B2

B =
B +BT

2
+

B −BT

2

.

By interchanging time and space derivatives, we obtain

d

dt

∣∣∣∣
t=0

Jϕt = J
dϕt
dt

∣∣∣∣
t=0

,

since the Jacobian takes spatial derivatives. Recall that dϕt/dt = V (ϕt), so dϕt/dt|t=0 =
V (x, y, z) = V . Thus,

(4.1)
d

dt
Jϕt

∣∣∣∣
t=0

= JV =


∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z





We return now to offer a quick proof of Theorem 3.5. We will need our second linear
algebra fact of the day:
The second linear algebra fact is less immediate.

Proposition 4.2. For an n× n matrix A(t) with A(0) = I ,

(4.2)
d

dt

∣∣∣∣
t=0

detA(t) = tr
dA

dt

∣∣∣∣
t=0

Exercise 4.3. Prove Proposition 4.2. This produces a trivial statement when n = 1, so
start first with an explicit computation for n = 2. Then try to use a more sophisticated
argument for n = 3 and generalize to arbitrary n.

Proof of Theorem 3.5. Applying (4.2), we see that
d

dt

∣∣∣∣
t=0

det Jϕt equals the trace of JV ,

given in (4.1). But the trace of JV is the divergence∇ · V , which proves our theorem. �

To understand how curl relates to Jϕt, we turn to our third linear algebra fact:
Linear Algebra Fact 3:

• Symmetric matrices are the derivatives of expansion maps along 3 mutually per-
pendicular axes.
• Skew-symmetric matrices are the derivatives of orthogonal matrices.
• Orthogonal matrices are (products of) rotations (about an axis through the origin)

and a reflection.

A rigorous proof of this fact is beyond the scope of our course. An important area in
mathematics is the study of Lie groups – spaces which have both a group structure and a
manifold structure (i.e., locally they look like Rn). Examples of Lie groups are the circle,
Rn, and many matrix groups, including GL(n,R) and O(n), the group of orthogonal
matrices. The space of tangent vectors at the identity to a Lie group forms its Lie algebra.
The second bulletpoint above is equivalent to saying the Lie algebra of O(n) consists of
the skew-symmetric matrices.
So consider a 3× 3 skew-symmetric matrix M :

M =

 0 −c b
c 0 a
−b a 0


It represents the derivative of a rotation in the following way: let ~ω = 〈a, b, c〉. Then
applying M to a vector w produces Mw = u × w. The direction of ~ω specifies the axis
of rotation, and its magnitude gives the rotational speed. Rotation along u moves w in a
circle about ~ω; the tangent vector to this rotation is precisely u×w. See Figure 4.
So what does this mean to us? The matrix B2, which represents the skew-symmetric part
of the derivative of Jϕt, depicts the derivative of a rotation. Since

B2 =

 0 uy − vx uz − wx
vx − uy 0 vz − wy
wx − uz wy − vz 0

 ,



FIGURE 4.1. Rotation along u moves w along the red circle about u; the
tangent vector to this rotation is precisely u×w.

the rotation is about the axis ω = 〈wy − vz, uz − wx, vx − uy〉, which is precisely the curl of
V .

4.1. Summary: divergence and curl via Jϕt. The matrix
d

dt

∣∣∣∣
t=0

det Jϕt decomposes into

a symmetric and a skew-symmetric portion. The symmetric part measures the relative
rate of expansion via ϕt; its trace produces ∇ · V . The skew-symmetric part depicts the
tangent vector to a rotation; the rotation is given by∇×V . Hence, both the divergence and
curl of a vector field V necessarily appear when considering the Jacobian of its associated
family of diffeomorphisms.

4.2. Leibniz Rules. Recall the Leibniz rule, aka the product rule, from freshman calculus:

(fg)′ = f ′g + fg′.

We now consider six different vector versions of the Leibniz Rule. We must consider a
new type of operation, (A · ∇)B. For A = 〈a1, a2, a3〉, we define (A · ∇)B to be the vector
field

(A · ∇)B =

(
a1

∂

∂x
+ a1

∂

∂x
+ a1

∂

∂x

)
B,

which represents the vector operation of A on each component function of B.2

(1) ∇(fg) = g∇(f) + f∇(g)

(2) ∇(A ·B) = A× (∇×B) +B × (∇× A) + (A · ∇)B + (B · ∇)A

(3) ∇ · (fA) = ∇f · A+ f∇ · A

(4) ∇ · (A×B) = (∇× A) ·B − A · (∇×B)

(5) ∇× (fA) = ∇f × A+ f∇× A

(6) ∇× (A×B) = −(∇ · A)B + (∇ · A)B + (B · ∇)A− (A · ∇)B

2Indeed, most graduate geometry books write this as the vector field AB.



Remark 4.4. The last two terms of the last Leibniz Rule, (B · ∇)A− (A · ∇)B represent an
important concept in higher-level geometry, the Lie Bracket. The Lie Bracket is frequently
written as

[B,A] = BA− AB = (B · ∇)A− (A · ∇)B.

We mention this only in passing; our use for the Lie bracket is limited to the above Leibniz
rule.

4.3. Second derivatives and the vector Laplacian. For the three differential operations
div, grad, curl, there are 9 different combinations which might produce second deriva-
tives. Four of these are nonsensical: grad ◦ grad, grad ◦ curl, div ◦ div, curl ◦ div. The other
5 may be considered as second derivative operators. We have already discussed that
curl ◦ grad = 0 and div ◦ curl = 0. We now discuss the other three operations.

Definition 4.5. The Laplacian of a function f(x, y, z) is

∆f = fxx + fyy + fzz.

The Laplacian is equal to div ◦ grad, i.e., ∆f = ∇ · ∇f . It is an operator of fundamen-
tal importance in many areas of mathematics, including analysis, geometry, differential
equations, and applied math.
The last two second derivatives do not have nearly the same recognition; they are grad ◦ div
and curl ◦ curl. However, their difference relates back to the Laplacian.

Definition 4.6. For a vector field V (x, y, z) = 〈u, v, w〉, we define its vector Laplacian to be

L(V ) = ∆ui + ∆vj + ∆wk.

Proposition 4.7. The vector Laplacian equals grad ◦ div minus curl ◦ curl:

L(V ) = ∇(∇ · V )−∇× (∇× V )

Exercise 4.8. Prove the above proposition.

We conclude by summarizing the five well-defined second derivatives:

(1) ∇×∇f = 0
(2) ∇ · (∇× V ) = 0
(3) ∇ · ∇f = ∆f
(4) ∇(∇ · V )
(5) ∇× (∇× V )

L(V ) = ∇(∇ · V )−∇× (∇× V )



5. VECTOR CALCULUS REVIEW IV

5.1. Line integrals. We continue our vector calculus review by considering some inte-
grals involving vector fields. The first type are line integrals, which measure the flow of a
vector field along a curve; the curve is arbitrary and need not be a flowline of the field.

For a curve C, the line integral of V along C is
∫
C

V · dr.

To compute a line integral, we parameterize C as C(t) = (x(t), y(t), z(t)) where t ∈ [a, b].
We use these to rewrite V = V (t) and then take the dot product with the form dr =
〈dx, dy, dz〉 = 〈x′(t), y′(t), z′(t)〉dt. (The last equality is merely the chain rule in disguise.)
The form dr measures the tangent vector to the curve. So the line integral computes the
component of V that is tangent to the curve and integrates it along the length of the curve.

Definition 5.1. The line integral of V over a closed curve C is known as its circulation. For

emphasis, we write the line integral as
∮
V · dr in this case.

Example 5.2. Compute the line integral of V = 〈y, x〉 over the circle x2 + y2 = 4, traversed
counterclockwise.
We begin by parametrizing the circle as x(t) = 2 cos t, y(t) = 2 sin t. Then, the form
dr = 2〈− sin t, cos t〉dt, and V = 2〈sin t, cos t〉. Thus,∮

V · dr =

∫ 2π

0

4(cos2 t− sin2 t) dt

=

∫ 2π

0

4 cos(2t) dt (using a trig identity)

= 2 sin(2t)|2π0
= 0 �

Proposition 5.3. 1. The circulation of a gradient over a closed curve must be zero, i.e.,
∮
C

∇f ·
dr = 0.
2. For an arbitrary curve C1 from p to q, the line integral of a gradient is the difference of the

values at the endpoints:
∫
C1

∇f · dr = f(q)− f(p).

3. Line integrals are independent of our choice of parameterizing C.

Proof. To understand why, recall that ∇f · u was the directional derivative of f in the
direction of u. So ∇f · dr measures the rate of change of f as we move tangent to the
curve; by integrating, we obtain the difference in f ’s values from p to q.
The first statement is a consequence of the second. The third is merely a change of vari-
ables argument. �

A useful, visual example is where f(x, y) represents the height on a mountain and maybe
C depicts a hiking trail. The line integral along C measures your net change in elevation
as you traverse the trail. If the trail ends where it starts, i.e., C is closed, then your net
elevation change is zero.
The vector field in Example 5.2 is the gradient of f = xy, so its circulation must be zero.



5.2. Surface integrals. Now we turn to surface integrals. Given a surface S, we will want
(rarely) to integrate functions g over S and (often) to measure the flux of a vector field over
S. We write these integrals as∫

S

g dA and
∫
S

(V · n̂) dA,

where dA represents the area form on S. n.b., we will not write multiple integral signs
even though the integral over S is a double integral.

Definition 5.4. The flux
∫
S

(V · n̂) dA of a vector field V over an oriented surface S mea-

sures the component of V that is flowing across S (as opposed to flowing tangent to S).
Here n is the unique unit normal vector to S which agrees with its orientation.

To compute a surface integral, begin by parameterizing the surface in terms of variables
u, v; that is find a map f from a subset of the uv-plane into R3 whose image is S. (We can
break S into pieces if necessary, e.g., if it is the outside of a cube.) Then a normal vector is
given by the cross product N = fu × fv. To find n̂, normalize N and pick the appropriate
orientation, i.e.,

n̂ = ± fu × fv
|fu × fv|

.

Now to compute the area form dA. If we were integrating a region in the xy-plane, it
would just be dxdy. For other parametrizations, we must measure the amount that they
stretch area; this stretch is precisely given by |fu × fv|, so dA = |fu × fv| dudv. Thus, we
conclude that the flux integrand is

V · n̂) dA = V · ± fu × fv
|fu × fv|

|fu × fv| dudv = V · ±(fu × fv) dudv

Remark 5.5. 1. Surfaces with boundary acquire their orientation via the right-hand rule
from their boundary curve. For example, the unit disk in the xy-plane, when bounded
by the circle oriented counterclockwise, acquires an orientation so that n̂ points up. (Curl
your right hand along the circle counterclockwise; your thumb will point up.) If the circle
is oriented clockwise, then n̂ will point down.
2. For surfaces without boundary, such as the sphere or torus, we may assume that they
are oriented so that n̂ points out. We orient the plane so n̂ points up.

Example 5.6. Parameterize the unit sphere by spherical coordinates, and then calculate
the flux of V = xyi + xzk.
Spherical coordinates state that x = ρ cos θ sinφ, y = ρ sin θ sinφ, and z = ρ cosφ, where ρ ∈
[0,∞), φ ∈ [0, π], θ ∈ [0, 2π]. For the unit sphere, ρ = 1. Thus our surface parameterization
is

f(φ, θ) = 〈cos θ sinφ, sin θ sinφ, cosφ〉.

We calculate that fφ × fθ = sinφ 〈x, y, z〉. Thus n̂ = ± sinφ

| sinφ|
〈x, y, z〉 = ±〈x, y, z〉. Note

that sinφ is always nonnegative on its domain. We want n̂ to point outward, so we pick
+〈x, y, z〉.



To calculate the flux, we perform the double integral∫
S

V · n̂ =

∫ 2π

θ=0

∫ π

φ=0

V · |fφ × fθ| dφdθ.

This integral seems much worse than it is; symmetry allows a lot of things to cancel or
integrate to zero. In fact, the whole integral equals 0.
Geometrically, we can see this by looking at the flux of the term xyi. On the front of the
sphere, this will be flowing out when x, y have the same sign, and flowing in when they
don’t. These contributions precisely cancel each other. On the back of the sphere, this
flows in when x, y have the same sign, and flows out when they don’t. Again the contri-
butions cancel. The same behavior is similarly true for xzk. This should fully convince
you that the flux must be zero. �

5.3. Integral Theorems. We close with the two crowning integral theorems of vector cal-
culus, which you will explore in homework.

Theorem 5.7 (Divergence Theorem). Let Ω be a compact (i.e., a closed and bounded) three-
dimensional subset of R3 with piecewise smooth boundary ∂Ω. Let n̂ be the unit outward normal
vector to the boundary , and let V be a smooth vector field on Ω. Then,

(5.1)
∫

Ω

∇ · V dvol =

∫
∂Ω

V · n̂ dA

Theorem 5.8 (Stokes’ Theorem). Let S be a compact (i.e., a closed and bounded) orientable
surface with piecewise smooth boundary ∂S. Let n̂ be the unit outward normal vector to its
boundary, and let V be a smooth vector field on S. Then,

(5.2)
∫
S

∇× V · n̂ dA =

∫
∂S

V · dr

We note that ∂Ω might consist of multiple surfaces; in this case we break up the surface
integral into one per boundary surface and sum the results. Similarly, ∂S might consist
of multiple curves; in this case we break up the line integral into one per boundary curve
and sum the results.
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